Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(7): 1457-1482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135896

RESUMO

Microorganism lipid droplet small regulator (MLDSR) is a transcriptional regulator of the major lipid droplet (LD)-associated protein MLDS in Rhodococcus jostii RHA1 and Rhodococcus opacus PD630. In this study, we investigated the role of MLDSR on lipid metabolism and triacylglycerol (TAG) accumulation in R. jostii RHA1 at physiological and molecular levels. MLDSR gene deletion promoted a significant decrease of TAG accumulation, whereas inhibition of de novo fatty acid biosynthesis by the addition of cerulenin significantly repressed the expression of the mldsr-mlds cluster under nitrogen-limiting conditions. In vitro and in vivo approaches revealed that MLDSR-DNA binding is inhibited by fatty acids and acyl-CoA residues through changes in the oligomeric or conformational state of the protein. RNAseq analysis indicated that MLDSR not only controls the expression of its own gene cluster but also of several genes involved in central, lipid, and redox metabolism, among others. We also identified putative MLDSR-binding sites on the upstream regions of genes coding for lipid catabolic enzymes and validated them by EMSA assays. Overexpression of mldsr gene under nitrogen-rich conditions promoted an increase of TAG accumulation, and further cell lysis with TAG release to the culture medium. Our results suggested that MLDSR is a fatty acid-responsive regulator that plays a dual role in cells by repression or activation of several metabolic genes in R. jostii RHA1. MLDSR seems to play an important role in the fine-tuning regulation of TAG accumulation, LD formation, and cellular lipid homeostasis, contributing to the oleaginous phenotype of R. jostii RHA1 and R. opacus PD630.


Assuntos
Gotículas Lipídicas , Rhodococcus , Gotículas Lipídicas/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Fenótipo , Rhodococcus/genética , Rhodococcus/metabolismo , Nitrogênio/metabolismo
2.
J Chem Inf Model ; 63(8): 2495-2504, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37026789

RESUMO

The globally expanding threat of antibiotic resistance calls for the development of new strategies for abating Gram-negative bacterial infections. The use of extracorporeal blood cleansing devices with affinity sorbents to selectively capture bacterial lipopolysaccharide (LPS), which is the major constituent of Gram-negative bacterial outer membranes and the responsible agent for eliciting an exacerbated innate immune response in the host during infection, has received outstanding interest. For that purpose, molecules that bind tightly to LPS are required to functionalize the affinity sorbents. Particularly, anti-LPS factors (ALFs) are promising LPS-sequestrating molecules. Hence, in this work, molecular dynamics (MD) simulations are used to investigate the interaction mechanism and binding pose of the ALF isoform 3 from Penaeus monodon (ALFPm3), which is referred to as "AL3" for the sake of simplicity, and lipid A (LA, the component of LPS that represents its endotoxic principle). We concluded that hydrophobic interactions are responsible for AL3-LA binding and that LA binds to AL3 within the protein cavity, where it buries its aliphatic tails, whereas the negatively charged phosphate groups are exposed to the medium. AL3 residues that are key for its interaction with LA were identified, and their conservation in other ALFs (specifically Lys39 and Tyr49) was also analyzed. Additionally, based on the MD-derived results, we provide a picture of the possible AL3-LA interaction mechanism. Finally, an in vitro validation of the in silico predictions was performed. Overall, the insights gained from this work can guide the design of novel therapeutics for treating sepsis, since they may be significantly valuable for designing LPS-sequestrating molecules that could functionalize affinity sorbents to be used for extracorporeal blood detoxification.


Assuntos
Lipídeo A , Penaeidae , Animais , Lipopolissacarídeos/farmacologia , Penaeidae/metabolismo , Penaeidae/microbiologia , Simulação de Dinâmica Molecular , Isoformas de Proteínas/metabolismo
3.
Nucleic Acids Res ; 50(20): 11938-11947, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370103

RESUMO

Some transcription factors bind DNA motifs containing direct or inverted sequence repeats. Preference for each of these DNA topologies is dictated by structural constraints. Most prokaryotic regulators form symmetric oligomers, which require operators with a dyad structure. Binding to direct repeats requires breaking the internal symmetry, a property restricted to a few regulators, most of them from the AraC family. The KorA family of transcriptional repressors, involved in plasmid propagation and stability, includes members that form symmetric dimers and recognize inverted repeats. Our structural analyses show that ArdK, a member of this family, can form a symmetric dimer similar to that observed for KorA, yet it binds direct sequence repeats as a non-symmetric dimer. This is possible by the 180° rotation of one of the helix-turn-helix domains. We then probed and confirmed that ArdK shows affinity for an inverted repeat, which, surprisingly, is also recognized by a non-symmetrical dimer. Our results indicate that structural flexibility at different positions in the dimerization interface constrains transcription factors to bind DNA sequences with one of these two alternative DNA topologies.


Assuntos
DNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Sequência de Bases , Sequência de Aminoácidos , Sequências Hélice-Volta-Hélice , DNA/química , Inversão de Sequência , Sítios de Ligação
4.
J Mol Biol ; 434(19): 167752, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868361

RESUMO

Low-copy-number plasmids require sophisticated genetic devices to achieve efficient segregation of plasmid copies during cell division. Plasmid R388 uses a unique segregation mechanism, based on StbA, a small multifunctional protein. StbA is the key protein in a segregation system not involving a plasmid-encoded NTPase partner, it regulates the expression of several plasmid operons, and it is the main regulator of plasmid conjugation. The mechanisms by which StbA, together with the centromere-like sequence stbS, achieves segregation, is largely uncharacterized. To better understand the molecular basis of R388 segregation, we determined the crystal structure of the conserved N-terminal domain of StbA to 1.9 Å resolution. It folds into an HTH DNA-binding domain, structurally related to that of the PadR subfamily II of transcriptional regulators. StbA is organized in two domains. Its N-terminal domain carries the specific stbS DNA binding activity. A truncated version of StbA, deleted of its C-terminal domain, displays only partial activities in vivo, indicating that the non-conserved C-terminal domain is required for efficient segregation and subcellular plasmid positioning. The structure of StbA DNA-binding domain also provides some insight into how StbA monomers cooperate to repress transcription by binding to the stbDR and to form the segregation complex with stbS.


Assuntos
Proteínas de Bactérias , Segregação de Cromossomos , Nucleosídeo-Trifosfatase , Plasmídeos , Proteínas de Bactérias/química , DNA/química , DNA/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Óperon , Plasmídeos/genética , Domínios Proteicos
5.
Prog Lipid Res ; 81: 101083, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373616

RESUMO

There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.


Assuntos
Engenharia Metabólica , Xantofilas , Vias Biossintéticas , Biotecnologia , Xantofilas/metabolismo
6.
Biochemistry ; 59(50): 4735-4743, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33283513

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential ingredients of the human diet. They are synthesized by LC-PUFA synthases (PFASs) expressed in marine bacteria and other organisms. PFASs are large enzyme complexes that are homologous to mammalian fatty acid synthases and microbial polyketide synthases. One subunit of each PFAS harbors consecutive ketosynthase (KSc) and chain length factor (CLF) domains that collectively catalyze the elongation of a nascent fatty acyl chain via iterative carbon-carbon bond formation. We report the X-ray crystal structure of the KS-CLF didomain from a well-studied PFAS in Moritella marina. Our structure, in combination with biochemical analysis, provides a foundation for understanding the mechanism of substrate recognition and chain length control by the KS-CLF didomain as well as its interaction with a cognate acyl carrier protein partner.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos Insaturados/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Vias Biossintéticas , Domínio Catalítico/genética , Cristalografia por Raios X , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos Insaturados/química , Humanos , Espectrometria de Massas , Modelos Moleculares , Moritella/enzimologia , Moritella/genética , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato
7.
PLoS Genet ; 16(4): e1008750, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32348296

RESUMO

Plasmids, when transferred by conjugation in natural environments, must overpass restriction-modification systems of the recipient cell. We demonstrate that protein ArdC, encoded by broad host range plasmid R388, was required for conjugation from Escherichia coli to Pseudomonas putida. Expression of ardC was required in the recipient cells, but not in the donor cells. Besides, ardC was not required for conjugation if the hsdRMS system was deleted in P. putida recipient cells. ardC was also required if the hsdRMS system was present in E. coli recipient cells. Thus, ArdC has antirestriction activity against the HsdRMS system and consequently broadens R388 plasmid host range. The crystal structure of ArdC was solved both in the absence and presence of Mn2+. ArdC is composed of a non-specific ssDNA binding N-terminal domain and a C-terminal metalloprotease domain, although the metalloprotease activity was not needed for the antirestriction function. We also observed by RNA-seq that ArdC-dependent conjugation triggered an SOS response in the P. putida recipient cells. Our findings give new insights, and open new questions, into the antirestriction strategies developed by plasmids to counteract bacterial restriction strategies and settle into new hosts.


Assuntos
Conjugação Genética , Proteínas Virais/química , Domínio Catalítico , Cristalografia por Raios X , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Especificidade de Hospedeiro , Magnésio/química , Metaloproteases/química , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Crit Rev Biotechnol ; 40(3): 292-305, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31931630

RESUMO

Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, often pose a serious risk not only when delivered in the bloodstream but also in air, the environment and several industrial fields such as pharmaceutics or food. LPS is constituted of three regions; the O-specific chain, the core region and the lipid A, which is the responsible segment of the toxicity. Previous literature dealt with the study of lipid A, its potential ligands as well as the mechanisms of Lipid A interactions that, among other applications, establish the basis for detection methods such as Limulus Amebocyte Lysate (LAL) assays and emerging biosensoring techniques. However, quantifying LPS binding affinity is an urgent need that still requires thorough studies. In this context, this work reviews the molecules that bind LPS, highlighting quantitative affinity parameters. Moreover, state of the art methods to analyze the affinity and kinetics of lipid-ligand interactions are also reviewed and different techniques have been briefly described. Thus, first, we review existing information on LPS ligands, classifying them into three main groups and targeting the comparison of molecules in terms of their interaction affinities and, second, we establish the basis for further research aimed at the development of effective methods for LPS detection and removal.


Assuntos
Proteínas de Transporte/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Bactérias Gram-Negativas/metabolismo , Humanos , Sistema Imunitário/metabolismo , Lipídeo A/metabolismo , Conformação Proteica
9.
Methods Mol Biol ; 2075: 145-156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584161

RESUMO

Relaxases are essential proteins for plasmid conjugation. They process the DNA to be transferred by means of a covalent intermediate. Thus, the characterization of these covalent complexes is essential to understand the biological role of this reaction and to improve it for biotechnological applications. In this article, we describe the use of the polyacrylamide electrophoresis techniques for the identification of relaxase-DNA covalent complexes, being SDS-PAGE a simple and reliable method for the detection of protein-DNA covalent adducts. Relaxases also perform a strand transfer reaction to recircularize the DNA and finish the DNA transfer process in the recipient cell. Urea-PAGE allows us the analysis of oligonucleotides generated by the strand transfer reaction. These methods could also be used for the analysis of other HUH endonucleases.


Assuntos
DNA Nucleotidiltransferases/metabolismo , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Substâncias Macromoleculares/metabolismo , DNA/química , DNA/genética , Clivagem do DNA , DNA Nucleotidiltransferases/química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Modelos Moleculares , Conformação Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
10.
Protein Eng Des Sel ; 32(1): 25-32, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251342

RESUMO

Some bacteria belonging to the actinobacteria and proteobacteria groups can accumulate neutral lipids expressing enzymes of the wax ester synthase/acyl coenzyme A: diacylglycerol acyltransferase (WS/DGAT) family. tDGAT is a WS/DGAT-like enzyme from Thermomonospora curvata able to produce TAGs and WEs when heterologously expressed in Escherichia coli. In this study, a protocol for the directed evolution of bacterial lipid-producing enzymes based on fluorimetry is developed and tested. tDGAT has been successfully evolved towards the improvement of TAG production with an up to 2.5 times increase in TAG accumulation. Mutants with no ability to produce TAGs but able to accumulate waxes were also selected during the screening. The localization of the mutations that enhance TAG production in the outer surface of tDGAT points out possible new mechanisms that contribute to the activity of this family of enzymes. This Nile red-based high throughput screening provides an evolution platform for other WS/DGAT-like enzymes.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/química , Diacilglicerol O-Aciltransferase/química , Evolução Molecular Direcionada , Actinobacteria/genética , Proteínas de Bactérias/genética , Diacilglicerol O-Aciltransferase/genética , Thermomonospora
11.
Microb Cell Fact ; 17(1): 88, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884177

RESUMO

BACKGROUND: Some marine bacteria, such as Moritella marina, produce the nutraceutical docosahexaenoic acid (DHA) thanks to a specific enzymatic complex called Pfa synthase. Escherichia coli heterologously expressing the pfa gene cluster from M. marina also produces DHA. The aim of this study was to find genetic or metabolic conditions to increase DHA production in E. coli. RESULTS: First, we analysed the effect of the antibiotic cerulenin, showing that DHA production increased twofold. Then, we tested a series of single gene knockout mutations affecting fatty acid biosynthesis, in order to optimize the synthesis of DHA. The most effective mutant, fabH, showed a threefold increase compared to wild type strain. The combination of cerulenin inhibition and fabH deletion rendered a 6.5-fold improvement compared to control strain. Both strategies seem to have the same mechanism of action, in which fatty acid synthesis via the canonical pathway (fab pathway) is affected in its first catalytic step, which allows the substrates to be used by the heterologous pathway to synthesize DHA. CONCLUSIONS: DHA-producing E. coli strain that carries a fabH gene deletion boosts DHA production by tuning down the competing canonical biosynthesis pathway. Our approach can be used for optimization of DHA production in different organisms.


Assuntos
Alanina/análogos & derivados , Aminoácidos/antagonistas & inibidores , Ácidos Borônicos/antagonistas & inibidores , Cerulenina/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Organofosfonatos/metabolismo , Alanina/metabolismo , Expressão Gênica
12.
J Biol Chem ; 293(32): 12491-12501, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29921583

RESUMO

Omega-3 polyunsaturated fatty acids (PUFA) are produced in some unicellular organisms, such as marine gammaproteobacteria, myxobacteria, and thraustochytrids, by large enzyme complexes called PUFA synthases. These enzymatic complexes resemble bacterial antibiotic-producing proteins known as polyketide synthases (PKS). One of the PUFA synthase subunits is a conserved large protein (PfaA in marine proteobacteria) that contains three to nine tandem acyl carrier protein (ACP) domains as well as condensation and modification domains. In this work, a study of the PfaA architecture and its ability to initiate the synthesis by selecting malonyl units has been carried out. As a result, we have observed a self-acylation ability in tandem ACPs whose biochemical mechanism differ from the previously described for type II PKS. The acyltransferase domain of PfaA showed a high selectivity for malonyl-CoA that efficiently loads onto the ACPs domains. These results, together with the structural organization predicted for PfaA, suggest that this protein plays a key role at early stages of the anaerobic pathway of PUFA synthesis.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Flavobacteriaceae/metabolismo , Malonil Coenzima A/metabolismo , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Ácido Graxo Sintases/química , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
13.
PLoS One ; 12(4): e0176520, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448543

RESUMO

Triglycerides (TAGs), the major storage molecules of metabolic energy and source of fatty acids, are produced as single cell oil by some oleogenic microorganisms. However, these microorganisms require strict culture conditions, show low carbon source flexibilities, lack efficient genetic modification tools and in some cases pose safety concerns. TAGs have essential applications such as behaving as a source for added-value fatty acids or giving rise to the production of biodiesel. Hence, new alternative methods are urgently required for obtaining these oils. In this work we describe TAG accumulation in the industrially appropriate microorganism Escherichia coli expressing the heterologous enzyme tDGAT, a wax ester synthase/triacylglycerol:acylCoA acyltranferase (WS/DGAT). With this purpose, we introduce a codon-optimized gene from the thermophilic actinomycete Thermomonospora curvata coding for a WS/DGAT into different E. coli strains, describe the metabolic effects associated to the expression of this protein and evaluate neutral lipid accumulation. We observe a direct relation between the expression of this WS/DGAT and TAG production within a wide range of culture conditions. More than 30% TAGs were detected within the bacterial neutral lipids in 90 minutes after induction. TAGs were observed to be associated with the hydrophobic enzyme while forming round intracytoplasmic bodies, which could represent a bottleneck for lipid accumulation in E. coli. We detected an increase of almost 3-fold in the monounsaturated fatty acids (MUFA) occurring in the recombinant strains. These MUFA were predominant in the accumulated TAGs achieving 46% of the TAG fatty acids. These results set the basis for further research on the achievement of a suitable method towards the sustainable production of these neutral lipids.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura , Triglicerídeos/metabolismo , Biocombustíveis/microbiologia , Diacilglicerol O-Aciltransferase/química , Expressão Gênica , Modelos Moleculares , Conformação Proteica
14.
Microb Cell Fact ; 16(1): 35, 2017 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241831

RESUMO

BACKGROUND: Rhodococcus jostii RHA1 and other actinobacteria accumulate triglycerides (TAG) under nutrient starvation. This property has an important biotechnological potential in the production of sustainable oils. RESULTS: To gain insight into the metabolic pathways involved in TAG accumulation, we analysed the transcriptome of R jostii RHA1 under nutrient-limiting conditions. We correlate these physiological conditions with significant changes in cell physiology. The main consequence was a global switch from catabolic to anabolic pathways. Interestingly, the Entner-Doudoroff (ED) pathway was upregulated in detriment of the glycolysis or pentose phosphate pathways. ED induction was independent of the carbon source (either gluconate or glucose). Some of the diacylglycerol acyltransferase genes involved in the last step of the Kennedy pathway were also upregulated. A common feature of the promoter region of most upregulated genes was the presence of a consensus binding sequence for the cAMP-dependent CRP regulator. CONCLUSION: This is the first experimental observation of an ED shift under nutrient starvation conditions. Knowledge of this switch could help in the design of metabolomic approaches to optimize carbon derivation for single cell oil production.


Assuntos
Redes e Vias Metabólicas , Rhodococcus/metabolismo , Triglicerídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Glicólise , Redes e Vias Metabólicas/genética , Via de Pentose Fosfato/genética , Rhodococcus/genética
15.
Curr Top Microbiol Immunol ; 413: 93-113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29536356

RESUMO

All plasmids that spread by conjugative transfer encode a relaxase. That includes plasmids that encode the type IV secretion machinery necessary to mediate cell to cell transfer, as well as mobilizable plasmids that exploit the existence of other plasmids' type IV secretion machinery to enable their own lateral spread. Relaxases perform key functions in plasmid transfer by first binding to their cognate plasmid as part of a multiprotein complex called the relaxosome, which is then specifically recognized by a receptor protein at the opening of the secretion channel. Relaxases catalyze a site- and DNA-strand-specific cleavage reaction on the plasmid then pilot the single strand of plasmid DNA through the membrane-spanning type IV secretion channel as a nucleoprotein complex. In the recipient cell, relaxases help terminate the transfer process efficiently and stabilize the incoming plasmid DNA. Here, we review the well-studied MOBF family of relaxases to describe the biochemistry of these versatile enzymes and integrate current knowledge into a mechanistic model of plasmid transfer in Gram-negative bacteria.


Assuntos
Bactérias Gram-Negativas , Proteínas de Bactérias , Conjugação Genética , DNA Bacteriano , Plasmídeos
16.
Front Mol Biosci ; 3: 71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27891505

RESUMO

The F plasmid is the foremost representative of a large group of conjugative plasmids, prevalent in Escherichia coli, and widely distributed among the Enterobacteriaceae. These plasmids are of clinical relevance, given their frequent association with virulence determinants, colicins, and antibiotic resistance genes. Originally defined by their sensitivity to certain male-specific phages, IncF plasmids share a conserved conjugative system and regulatory circuits. In order to determine whether the genetic architecture and regulation circuits are preserved among these plasmids, we analyzed the natural diversity of F-like plasmids. Using the relaxase as a phylogenetic marker, we identified 256 plasmids belonging to the IncF/ MOBF12group, present as complete DNA sequences in the NCBI database. By comparative genomics, we identified five major groups of F-like plasmids. Each shows a particular operon structure and alternate regulatory systems. Results show that the IncF/MOBF12 conjugation gene cluster conforms a diverse and ancient group, which evolved alternative regulatory schemes in its adaptation to different environments and bacterial hosts.

17.
Mol Microbiol ; 101(3): 439-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27101775

RESUMO

Conjugative transfer of the broad-host-range RA3 plasmid, the archetype of the IncU group, relies on the relaxase NIC that belongs to the as yet uncharacterized MOBP4 subfamily. NIC contains the signature motifs of HUH relaxases involved in Tyr nucleophilic attack. However, it differs in the residue involved in His activation for cation coordination and was shown here to have altered divalent cation requirements. NIC is encoded in the mobC-nic operon preceded directly by oriT, where mobC encodes an auxiliary transfer protein with a dual function: autorepressor and stimulator of conjugative transfer. Here an interplay between MobC and NIC was demonstrated. MobC is required for efficient NIC cleavage of oriT in supercoiled DNA whereas NIC assists MobC in repression of the mobC-nic operon. A 7-bp arm of IR3 (IR3a) was identified as the binding site for NIC and the crucial nucleotides in IR3a for NIC recognition were defined. Fully active oriTRA3 was delineated to a 47-bp DNA segment encompassing a conserved cleavage site sequence, the NIC binding site IR3a and the MobC binding site OM . This highly efficient RA3 conjugative system with defined requirements for minimal oriT could find ample applications in biotechnology and computational biology where simple conjugative systems are needed.


Assuntos
Endodesoxirribonucleases/genética , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Conjugação Genética , DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Transferência de Genes , Transferência Genética Horizontal , Óperon , Domínios Proteicos , Relação Estrutura-Atividade
18.
PLoS One ; 11(3): e0152666, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27027740

RESUMO

During bacterial conjugation and rolling circle replication, HUH endonucleases, respectively known as relaxases and replicases, form a covalent bond with ssDNA when they cleave their target sequence (nic site). Both protein families show structural similarity but limited amino acid identity. Moreover, the organization of the inverted repeat (IR) and the loop that shape the nic site differs in both proteins. Arguably, replicases cleave their target site more efficiently, while relaxases exert more biochemical control over the process. Here we show that engineering a relaxase target by mimicking the replicase target, results in enhanced formation of protein-DNA covalent complexes. Three widely different relaxases, which belong to MOBF, MOBQ and MOBP families, can properly cleave DNA sequences with permuted target sequences. Collaterally, the secondary structure that the permuted targets acquired within a supercoiled plasmid DNA resulted in poor conjugation frequencies underlying the importance of relaxase accessory proteins in conjugative DNA processing. Our results reveal that relaxase and replicase targets can be interchangeable in vitro. The new Rep substrates provide new bioconjugation tools for the design of sophisticated DNA-protein nanostructures.


Assuntos
DNA Helicases/química , DNA Bacteriano/química , DNA de Cadeia Simples/química , Endodesoxirribonucleases/química , Escherichia coli/química , Nanoestruturas/química , Transativadores/química , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Endodesoxirribonucleases/metabolismo , Escherichia coli/metabolismo , Sequências Repetidas Invertidas , Plasmídeos/química , Plasmídeos/metabolismo , Transativadores/metabolismo
19.
Microb Cell Fact ; 15: 30, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26852325

RESUMO

BACKGROUND: Colwellia psychrerythraea 34H is a psychrophilic bacterium able to produce docosahexaenoic acid (DHA). Polyketide synthase pathway is assumed to be responsible for DHA production in marine bacteria. RESULTS: Five pfa genes from strain 34H were confirmed to be responsible for DHA formation by heterogeneous expression in Escherichia coli. The complexity of fatty acid profile of this strain was revealed by GC and GC-MS. Treatment of cells with cerulenin resulted in significantly reduced level of C16 monounsaturated fatty acid (C16:1(Δ9t), C16:1(Δ7)). In contrast, the amount of saturated fatty acids (C10:0, C12:0, C14:0), hydroxyl fatty acids (3-OH C10:0 and 3-OH C12:0), as well as C20:4ω3, C20:5ω3 and C22:6ω3 were increased. RNA sequencing (RNA-Seq) revealed the altered gene expression pattern when C. psychrerythraea cells were treated with cerulenin. Genes involved in polyketide synthase pathway and fatty acid biosynthesis pathway were not obviously affected by cerulenin treatment. In contrast, several genes involved in fatty acid degradation or ß-oxidation pathway were dramatically reduced at the transcriptional level. CONCLUSIONS: Genes responsible for DHA formation in C. psychrerythraea was first cloned and characterized. We revealed the complexity of fatty acid profile in this DHA-producing strain. Cerulenin could substantially change the fatty acid composition by affecting the fatty acid degradation at transcriptional level. Acyl-CoA dehydrogenase gene family involved in the first step of ß-oxidation pathway may be important to the selectivity of degraded fatty acids. In addition, inhibition of FabB protein by cerulenin may lead to the accumulation of malonyl-CoA, which is the substrate for DHA formation.


Assuntos
Alteromonadaceae/genética , Cerulenina/farmacologia , Ácidos Docosa-Hexaenoicos/biossíntese , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Alteromonadaceae/efeitos dos fármacos , Alteromonadaceae/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Cromatografia Gasosa , Ésteres/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos , Hidroxilação , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Temperatura , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
Angew Chem Int Ed Engl ; 55(13): 4348-52, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26915475

RESUMO

DNA-binding proteins are promising reagents for the sequence-specific modification of DNA-based nanostructures. Here, we investigate the utility of a series of relaxase proteins-TrwC, TraI, and MobA-for nanofunctionalization. Relaxases are involved in the conjugative transfer of plasmids between bacteria, and bind to their DNA target sites via a covalent phosphotyrosine linkage. We study the binding of the relaxases to two standard DNA origami structures-rodlike six-helix bundles and flat rectangular origami sheets. We find highly orthogonal binding of the proteins with binding yields of 40-50 % per binding site, which is comparable to other functionalization methods. The yields differ for the two origami structures and also depend on the position of the binding sites. Due to their specificity for a single-stranded DNA target, their orthogonality, and their binding properties, relaxases are a uniquely useful addition to the toolbox available for the modification of DNA nanostructures with proteins.


Assuntos
DNA/química , Nanoestruturas/química , Proteínas/química , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...